Dr. Mrinal Kanti Ghosh
Review on Chlorine Dioxide as a Disinfectant
The disinfection capabilities of ClO2
were recognized in the 1940s not long after its introduction in water treatment
(McCarthy, 1944). White (1972) mentioned several early studies in which ClO2
was an effective bactericide over a broad range of pH values (Ridenour and
Ingols, 1947) and an effective virucide (Hettche and Ehlbeck, 1953). White
(1972) also reported on the work of Bernarde et al. (1965), who found that the
disinfection efficiency of ClO2 increases as a function of pH.
Lykins et al. (1991) summarized CT (concentration times contact time) data from
several more recent disinfection studies (Hoff, 1986; Federal Register, 1989; Korich
et al., 1990) that show ClO2 to be a superior disinfectant to free
chlorine and chloramines against Giardia lamblia, Giardia muris,
and Cryptosporidium parvum. The CT value for Cryptosporidium inactivation by ClO2
is three orders of magnitude less than the CT values for inactivation by free
chlorine and chloramines at pH 7 and 25°C (CT of 78 for 90 percent inactivation
for ClO2, 7200 for 90 percent inactivation for chloramines, and 7200
for 99.9 percent inactivation for free chlorine). Finch et al. (1995) reported
the CT value for 99.9 percent Cryptosporidium inactivation with ClO2
was 140 (pH 7 and 25°C) using animal infectivity data. Liyanage et al. (1997)
reported a synergistic effect on Cryptosporidium parvum inactivation
when ClO2 pretreatment was followed by application of free chlorine
or monochloramine. They found that ClO2 (1.3 mg/L for 120 minutes)
followed by free chlorine (1.6 mg/L for 120 minutes) resulted in a 3 log-unit
(99.9 percent) reduction in infectivity. Similarly, they found that ClO2
(1.5 mg/L for 120 minutes) followed by monochloramine (2.8 mg/L for 180
minutes) resulted in a 2.8 log-unit (99.84 percent) reduction in infectivity.
The expected inactivations by ClO2, free chlorine or monochloramine
alone were 1.7 (98 percent), 0.0, and 0.0 log-units, respectively. The
researchers hypothesized that the synergistic effect demonstrated by sequential
disinfection is because “the stronger oxidant conditions the outer membrane of
the oocysts so that the secondary oxidant can penetrate the oocyst wall more
readily.”
Chlorine dioxide is a powerful
disinfectant. In fact, most research has determined that it is either more
effective or equal to chlorine on a mass-dose basis (Rittman 1997). In regards
to bacterial inactivation, Trakhtman (1949) determined that ClO2
doses of 1 mg/L to 5 mg/L were sufficient to kill Escherichia coli and Bacillus
anthracoides in turbid waters. Bedulivich et al. (1954) showed that ClO2
was equal to or better than chlorine in effectiveness against Salmonella
typhosa and S. paratyphi.
Similar studies have shown ClO2 to be an
effective disinfectant against other bacteria of concern,including Eberthella
typhosa, Shigella dysenteriae, S. paratyphi B, Pseudomonas
aeruginosa, and Staphylococcus aureus (Ridenour 1949).
As well as being an effective
bactericide, ClO2 has also been shown to be effective for
inactivation of many viruses. Various researchers have proven its effectiveness
against Poliovirus 1 and Coxsackie virus A9 (USEPA 1999 citing
Ridenour and Ingols 1946, Cronier et al. 1978, and Scarpino 1979). When
compared to chlorine at 8 higher than neutral pH, ClO2 is a stronger
disinfectant against Echovirus 7, Coxsackie virus B3, and Sendaivirus
(Smith and McVey 1973). Of great concern to water utilities today are the
pathogenic protozoa Giardia lamblia, Giardia muris, and Cryptosporidium
parvum. Researchers have found that Giardia cysts and Cryptosporidium
oocysts are largely resistant to free chlorine, UV irradiation, and
chloramines (Korich et al. 1990; Lorenzo-Lorenzo et al. 1993; Ransome et al.
1993). Hofmann et al. (1997) showed a 3-log Giardia inactivation after a
60-minute contact time with ClO2 at dosages between 1.5 mg/L and 2
mg/L. Lykins et al.(1991) showed that ClO2 is also a strong
disinfectant against Cryptosporidium oocysts.
*Comparison With Other Disinfectants is done by comparison test - concentration required for a > 105
reduction in viable cell counts in 60
secounds.
* Journal of Industrial Microbiology, 4 (1989) 145 - 154, Ralph S. Tanner
McCarthy, JA "Chlordioxid für sterben behandlung der Wasserversorgung." Jour. Neu
England Water Works Assoc. , 58: 252-264 (1944).
Weiß, GC 1972. Handbuch der Chlorierung . New York, NY: Van Nostrand Reinhold Co.White, George C. 1999. Handbuch der Chlorierung und Alternative Desinfektionsmittel , 4. Auflage. New York, NY: John Wiley & Sons.
Ridenour, GM, RS Ingols und EH Armbruster. . 1.949 Sporizide Eigenschaften von Chlordioxid Wasser & Abwasser Werke , 96: 8: 279.
Hettche, O., und Ehlbeck, HWS "Epidemiologie und Prophylaxe der Poliomyelitis in
BEZUG Markt auf sterben Rolle von Wasser bei Überweisung ein. " Arch Hyg Berlin.. , 137: 440 (1953).
Bernade, MA, Israel, BM, Olivieri, VP, und Granstrom, ML "Effizienz von Chlor
Kohlendioxid ALS Bakterizid. " Appl Microbiol.. , 13: 776 (September 1965).
Lykins, BW Jr, Goodrich, JA, Koffskey, WE, und Griese, MH "Steuern
Desinfektionsnebenprodukte mit Alternative Desinfektionsmittel. "In Proceedings 1991
Jahrestagung der AWWA . Denver, CO: AWWA 1991.
Hoff, JC "Inaktivierung von Mikroben DURCH chemische Desinfektionsmittel." US-EPA,
EPA / 600 / 2-86 / 067 1986.
Korich, DG, Mead, JR, Madore, MS, Sinclair, NA, und Sterling, CR "Auswirkungen der
Ozon, Chlordioxid, Chlor und Monochloramin Markt auf Cryptosporidium parvum
Oozyste Lebensfähigkeit. " ... Appl Environ Microbiol , 56: 5: 1423-1429 (1990).
Fink, GR, Liyanage, LRJ und Belosevic, M. Auswirkungen von Chlordioxid Markt auf
Cryptosporidium und Giardia . Proceedings of Third International Symposium on Chlordioxid: Trinkwasser, Prozesswasser-und Abwasserprobleme . Denver, CO: AWWA und AWWARF 1995.
"Wirkung von Chlordioxid Präkonditionierung Auf sterben Inaktivierung von Liyanage, LRJ, Gyurek, LL, Belosevic, M., und Fink, GR Cryptosporidium
Process Design-Exigences von freiem Chlor und Monochloramin. " Proceedings of the Water Quality Technology Conference 1996 . Denver, CO : AWWA 1997.
Trakhtman, NN 1949 Chlordioxid in der Wasserdesinfektion. Chemical Abstracts , 43: 1508.
Bedulivich, TS, MN Svetlakova, und NN Trakhtman. 1954 einsatz von Chlordioxid bei der Reinigung von Wasser. Chemical Abstracts, 48: 2953.
Ridenour, GM, und Ingols, RS "bakteriziden Eigenschaften von Chlordioxid." Jour.
AWWA , 39: 561 (1947).
Cronier, S., et al. 1978. Chlorung von Wasser Umweltverträglichkeitsprüfung und Auswirkungen Markt auf Druck Gesundheit , Vol. 2 (RL Jolley et al., Redakteure). Ann Arbor, MI: Ann Arbor Science Publishers, Inc.
Croue, JP. 1987.